feat: Implement new encryption algorithms ECDH and XChaCha20-Poly1305 with chunking support
This commit is contained in:
@@ -18,6 +18,7 @@ import java.security.spec.PKCS8EncodedKeySpec
|
||||
import java.io.ByteArrayOutputStream
|
||||
import java.util.zip.Deflater
|
||||
import java.util.zip.Inflater
|
||||
import com.google.crypto.tink.subtle.XChaCha20Poly1305
|
||||
|
||||
/**
|
||||
* Cryptography module for Rosetta Messenger
|
||||
@@ -147,34 +148,72 @@ object CryptoManager {
|
||||
* - Key size: 256 bit
|
||||
* - AES-256-CBC с PKCS5/PKCS7 padding
|
||||
* - Compression: zlib deflate (pako.deflate в JS)
|
||||
* - Формат: base64(iv):base64(ciphertext)
|
||||
* - Chunking для данных > 10MB
|
||||
* - Формат single chunk: base64(iv):base64(ciphertext)
|
||||
* - Формат chunked: "CHNK:" + chunks joined by "::"
|
||||
*/
|
||||
fun encryptWithPassword(data: String, password: String): String {
|
||||
// Compress data (zlib deflate - совместимо с pako.deflate в JS)
|
||||
val compressed = compress(data.toByteArray(Charsets.UTF_8))
|
||||
|
||||
// Derive key using PBKDF2-HMAC-SHA1 (⚠️ SHA1, не SHA256!)
|
||||
// crypto-js по умолчанию использует SHA1 для PBKDF2
|
||||
val factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
|
||||
val spec = PBEKeySpec(password.toCharArray(), SALT.toByteArray(Charsets.UTF_8), PBKDF2_ITERATIONS, KEY_SIZE)
|
||||
val secretKey = factory.generateSecret(spec)
|
||||
val key = SecretKeySpec(secretKey.encoded, "AES")
|
||||
val CHUNK_SIZE = 10 * 1024 * 1024 // 10MB
|
||||
|
||||
// Generate random IV
|
||||
val iv = ByteArray(16)
|
||||
SecureRandom().nextBytes(iv)
|
||||
val ivSpec = IvParameterSpec(iv)
|
||||
|
||||
// Encrypt with AES
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec)
|
||||
val encrypted = cipher.doFinal(compressed)
|
||||
|
||||
// Return iv:ciphertext in Base64
|
||||
val ivBase64 = Base64.encodeToString(iv, Base64.NO_WRAP)
|
||||
val ctBase64 = Base64.encodeToString(encrypted, Base64.NO_WRAP)
|
||||
|
||||
return "$ivBase64:$ctBase64"
|
||||
// Check if we need chunking
|
||||
if (compressed.size > CHUNK_SIZE) {
|
||||
// Chunk the compressed data
|
||||
val chunks = compressed.toList().chunked(CHUNK_SIZE).map { it.toByteArray() }
|
||||
val encryptedChunks = mutableListOf<String>()
|
||||
|
||||
for (chunk in chunks) {
|
||||
// Derive key using PBKDF2-HMAC-SHA1
|
||||
val factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
|
||||
val spec = PBEKeySpec(password.toCharArray(), SALT.toByteArray(Charsets.UTF_8), PBKDF2_ITERATIONS, KEY_SIZE)
|
||||
val secretKey = factory.generateSecret(spec)
|
||||
val key = SecretKeySpec(secretKey.encoded, "AES")
|
||||
|
||||
// Generate random IV
|
||||
val iv = ByteArray(16)
|
||||
SecureRandom().nextBytes(iv)
|
||||
val ivSpec = IvParameterSpec(iv)
|
||||
|
||||
// Encrypt with AES
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec)
|
||||
val encrypted = cipher.doFinal(chunk)
|
||||
|
||||
// Store as ivBase64:ctBase64
|
||||
val ivBase64 = Base64.encodeToString(iv, Base64.NO_WRAP)
|
||||
val ctBase64 = Base64.encodeToString(encrypted, Base64.NO_WRAP)
|
||||
encryptedChunks.add("$ivBase64:$ctBase64")
|
||||
}
|
||||
|
||||
// Return chunked format: "CHNK:" + chunks joined by "::"
|
||||
return "CHNK:" + encryptedChunks.joinToString("::")
|
||||
} else {
|
||||
// Single chunk (original behavior)
|
||||
// Derive key using PBKDF2-HMAC-SHA1 (⚠️ SHA1, не SHA256!)
|
||||
// crypto-js по умолчанию использует SHA1 для PBKDF2
|
||||
val factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
|
||||
val spec = PBEKeySpec(password.toCharArray(), SALT.toByteArray(Charsets.UTF_8), PBKDF2_ITERATIONS, KEY_SIZE)
|
||||
val secretKey = factory.generateSecret(spec)
|
||||
val key = SecretKeySpec(secretKey.encoded, "AES")
|
||||
|
||||
// Generate random IV
|
||||
val iv = ByteArray(16)
|
||||
SecureRandom().nextBytes(iv)
|
||||
val ivSpec = IvParameterSpec(iv)
|
||||
|
||||
// Encrypt with AES
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec)
|
||||
val encrypted = cipher.doFinal(compressed)
|
||||
|
||||
// Return iv:ciphertext in Base64
|
||||
val ivBase64 = Base64.encodeToString(iv, Base64.NO_WRAP)
|
||||
val ctBase64 = Base64.encodeToString(encrypted, Base64.NO_WRAP)
|
||||
|
||||
return "$ivBase64:$ctBase64"
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -187,10 +226,69 @@ object CryptoManager {
|
||||
* - Key size: 256 bit
|
||||
* - AES-256-CBC с PKCS5/PKCS7 padding
|
||||
* - Decompression: zlib inflate (pako.inflate в JS)
|
||||
* - Формат: base64(iv):base64(ciphertext)
|
||||
* - Supports old format (base64-encoded hex "iv:ciphertext")
|
||||
* - Supports new format (base64 "iv:ciphertext")
|
||||
* - Supports chunked format ("CHNK:" + chunks joined by "::")
|
||||
*/
|
||||
fun decryptWithPassword(encryptedData: String, password: String): String? {
|
||||
return try {
|
||||
// Check for old format: base64-encoded string containing hex
|
||||
if (isOldFormat(encryptedData)) {
|
||||
val decoded = String(Base64.decode(encryptedData, Base64.NO_WRAP), Charsets.UTF_8)
|
||||
val parts = decoded.split(":")
|
||||
if (parts.size != 2) return null
|
||||
|
||||
val iv = parts[0].chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val ciphertext = parts[1].chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
|
||||
// Derive key using PBKDF2-HMAC-SHA1
|
||||
val factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
|
||||
val spec = PBEKeySpec(password.toCharArray(), SALT.toByteArray(Charsets.UTF_8), PBKDF2_ITERATIONS, KEY_SIZE)
|
||||
val secretKey = factory.generateSecret(spec)
|
||||
val key = SecretKeySpec(secretKey.encoded, "AES")
|
||||
|
||||
// Decrypt with AES-256-CBC
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.DECRYPT_MODE, key, IvParameterSpec(iv))
|
||||
val decrypted = cipher.doFinal(ciphertext)
|
||||
|
||||
return String(decrypted, Charsets.UTF_8)
|
||||
}
|
||||
|
||||
// Check for chunked format
|
||||
if (encryptedData.startsWith("CHNK:")) {
|
||||
val chunkStrings = encryptedData.substring(5).split("::")
|
||||
val decompressedParts = mutableListOf<ByteArray>()
|
||||
|
||||
for (chunkString in chunkStrings) {
|
||||
val parts = chunkString.split(":")
|
||||
if (parts.size != 2) return null
|
||||
|
||||
val iv = Base64.decode(parts[0], Base64.NO_WRAP)
|
||||
val ciphertext = Base64.decode(parts[1], Base64.NO_WRAP)
|
||||
|
||||
// Derive key using PBKDF2-HMAC-SHA1
|
||||
val factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1")
|
||||
val spec = PBEKeySpec(password.toCharArray(), SALT.toByteArray(Charsets.UTF_8), PBKDF2_ITERATIONS, KEY_SIZE)
|
||||
val secretKey = factory.generateSecret(spec)
|
||||
val key = SecretKeySpec(secretKey.encoded, "AES")
|
||||
|
||||
// Decrypt with AES-256-CBC
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.DECRYPT_MODE, key, IvParameterSpec(iv))
|
||||
val decrypted = cipher.doFinal(ciphertext)
|
||||
|
||||
decompressedParts.add(decrypted)
|
||||
}
|
||||
|
||||
// Concatenate all decrypted chunks
|
||||
val allBytes = decompressedParts.fold(ByteArray(0)) { acc, arr -> acc + arr }
|
||||
|
||||
// Decompress the concatenated data
|
||||
return String(decompress(allBytes), Charsets.UTF_8)
|
||||
}
|
||||
|
||||
// New format: base64 "iv:ciphertext"
|
||||
val parts = encryptedData.split(":")
|
||||
if (parts.size != 2) return null
|
||||
|
||||
@@ -215,6 +313,20 @@ object CryptoManager {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if data is in old format (base64-encoded hex with ":")
|
||||
*/
|
||||
private fun isOldFormat(data: String): Boolean {
|
||||
return try {
|
||||
val decoded = String(Base64.decode(data, Base64.NO_WRAP), Charsets.UTF_8)
|
||||
decoded.contains(":") && decoded.split(":").all { part ->
|
||||
part.all { it in '0'..'9' || it in 'a'..'f' || it in 'A'..'F' }
|
||||
}
|
||||
} catch (e: Exception) {
|
||||
false
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* RAW Deflate сжатие (без zlib header)
|
||||
*
|
||||
@@ -263,9 +375,186 @@ object CryptoManager {
|
||||
outputStream.close()
|
||||
return outputStream.toByteArray()
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt data using ECDH + AES
|
||||
*
|
||||
* Algorithm:
|
||||
* 1. Generate ephemeral key pair
|
||||
* 2. Compute shared secret using ECDH (ephemeralPrivateKey × recipientPublicKey)
|
||||
* 3. Use x-coordinate of shared point as AES key
|
||||
* 4. Encrypt data with AES-256-CBC
|
||||
* 5. Return: base64(iv:ciphertext:ephemeralPrivateKey)
|
||||
*/
|
||||
fun encrypt(data: String, publicKeyHex: String): String {
|
||||
val ecSpec = ECNamedCurveTable.getParameterSpec("secp256k1")
|
||||
val keyPairGenerator = KeyPairGenerator.getInstance("ECDH", BouncyCastleProvider.PROVIDER_NAME)
|
||||
keyPairGenerator.initialize(ecSpec, SecureRandom())
|
||||
|
||||
// Generate ephemeral key pair
|
||||
val ephemeralKeyPair = keyPairGenerator.generateKeyPair()
|
||||
val ephemeralPrivateKey = ephemeralKeyPair.private as org.bouncycastle.jce.interfaces.ECPrivateKey
|
||||
val ephemeralPublicKey = ephemeralKeyPair.public as org.bouncycastle.jce.interfaces.ECPublicKey
|
||||
|
||||
// Parse recipient's public key
|
||||
val recipientPublicKeyBytes = publicKeyHex.chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val recipientPublicKeyPoint = ecSpec.curve.decodePoint(recipientPublicKeyBytes)
|
||||
val recipientPublicKeySpec = ECPublicKeySpec(recipientPublicKeyPoint, ecSpec)
|
||||
val keyFactory = KeyFactory.getInstance("ECDH", BouncyCastleProvider.PROVIDER_NAME)
|
||||
val recipientPublicKey = keyFactory.generatePublic(recipientPublicKeySpec)
|
||||
|
||||
// Compute shared secret using ECDH
|
||||
val keyAgreement = javax.crypto.KeyAgreement.getInstance("ECDH", BouncyCastleProvider.PROVIDER_NAME)
|
||||
keyAgreement.init(ephemeralPrivateKey)
|
||||
keyAgreement.doPhase(recipientPublicKey, true)
|
||||
val sharedSecret = keyAgreement.generateSecret()
|
||||
|
||||
// Use first 32 bytes (x-coordinate) as AES key
|
||||
val sharedKey = sharedSecret.copyOfRange(1, 33)
|
||||
val key = SecretKeySpec(sharedKey, "AES")
|
||||
|
||||
// Generate random IV
|
||||
val iv = ByteArray(16)
|
||||
SecureRandom().nextBytes(iv)
|
||||
val ivSpec = IvParameterSpec(iv)
|
||||
|
||||
// Encrypt with AES
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec)
|
||||
val encrypted = cipher.doFinal(data.toByteArray(Charsets.UTF_8))
|
||||
|
||||
// Get ephemeral private key bytes
|
||||
val ephemeralPrivateKeyBytes = ephemeralPrivateKey.d.toByteArray()
|
||||
val normalizedPrivateKey = if (ephemeralPrivateKeyBytes.size > 32) {
|
||||
ephemeralPrivateKeyBytes.copyOfRange(ephemeralPrivateKeyBytes.size - 32, ephemeralPrivateKeyBytes.size)
|
||||
} else {
|
||||
ephemeralPrivateKeyBytes
|
||||
}
|
||||
|
||||
// Return base64(iv:ciphertext:ephemeralPrivateKey)
|
||||
val ivHex = iv.joinToString("") { "%02x".format(it) }
|
||||
val ctHex = encrypted.joinToString("") { "%02x".format(it) }
|
||||
val ephemeralPrivateKeyHex = normalizedPrivateKey.joinToString("") { "%02x".format(it) }
|
||||
val combined = "$ivHex:$ctHex:$ephemeralPrivateKeyHex"
|
||||
|
||||
return Base64.encodeToString(combined.toByteArray(Charsets.UTF_8), Base64.NO_WRAP)
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt data using ECDH + AES
|
||||
*
|
||||
* Algorithm:
|
||||
* 1. Parse iv, ciphertext, and ephemeralPrivateKey from base64
|
||||
* 2. Compute ephemeral public key from ephemeral private key
|
||||
* 3. Compute shared secret using ECDH (privateKey × ephemeralPublicKey)
|
||||
* 4. Use x-coordinate of shared point as AES key
|
||||
* 5. Decrypt data with AES-256-CBC
|
||||
*/
|
||||
fun decrypt(encryptedData: String, privateKeyHex: String): String? {
|
||||
return try {
|
||||
// Decode base64
|
||||
val decoded = String(Base64.decode(encryptedData, Base64.NO_WRAP), Charsets.UTF_8)
|
||||
val parts = decoded.split(":")
|
||||
if (parts.size != 3) return null
|
||||
|
||||
val iv = parts[0].chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val ciphertext = parts[1].chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val ephemeralPrivateKeyBytes = parts[2].chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
|
||||
val ecSpec = ECNamedCurveTable.getParameterSpec("secp256k1")
|
||||
|
||||
// Compute ephemeral public key from ephemeral private key
|
||||
val ephemeralPrivateKeyBigInt = BigInteger(1, ephemeralPrivateKeyBytes)
|
||||
val ephemeralPublicKeyPoint = ecSpec.g.multiply(ephemeralPrivateKeyBigInt)
|
||||
val ephemeralPublicKeySpec = ECPublicKeySpec(ephemeralPublicKeyPoint, ecSpec)
|
||||
val keyFactory = KeyFactory.getInstance("ECDH", BouncyCastleProvider.PROVIDER_NAME)
|
||||
val ephemeralPublicKey = keyFactory.generatePublic(ephemeralPublicKeySpec)
|
||||
|
||||
// Parse private key
|
||||
val privateKeyBytes = privateKeyHex.chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val privateKeyBigInt = BigInteger(1, privateKeyBytes)
|
||||
val privateKeySpec = ECPrivateKeySpec(privateKeyBigInt, ecSpec)
|
||||
val privateKey = keyFactory.generatePrivate(privateKeySpec)
|
||||
|
||||
// Compute shared secret using ECDH
|
||||
val keyAgreement = javax.crypto.KeyAgreement.getInstance("ECDH", BouncyCastleProvider.PROVIDER_NAME)
|
||||
keyAgreement.init(privateKey)
|
||||
keyAgreement.doPhase(ephemeralPublicKey, true)
|
||||
val sharedSecret = keyAgreement.generateSecret()
|
||||
|
||||
// Use first 32 bytes (x-coordinate) as AES key
|
||||
val sharedKey = sharedSecret.copyOfRange(1, 33)
|
||||
val key = SecretKeySpec(sharedKey, "AES")
|
||||
|
||||
// Decrypt with AES-256-CBC
|
||||
val cipher = Cipher.getInstance("AES/CBC/PKCS5Padding")
|
||||
cipher.init(Cipher.DECRYPT_MODE, key, IvParameterSpec(iv))
|
||||
val decrypted = cipher.doFinal(ciphertext)
|
||||
|
||||
String(decrypted, Charsets.UTF_8)
|
||||
} catch (e: Exception) {
|
||||
null
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt data using XChaCha20-Poly1305
|
||||
*
|
||||
* Returns: {
|
||||
* ciphertext: hex string,
|
||||
* nonce: hex string (24 bytes),
|
||||
* key: hex string (32 bytes)
|
||||
* }
|
||||
*/
|
||||
fun chacha20Encrypt(data: String): ChaCha20Result {
|
||||
// Generate random key (32 bytes) and nonce (24 bytes)
|
||||
val key = ByteArray(32)
|
||||
val nonce = ByteArray(24)
|
||||
SecureRandom().nextBytes(key)
|
||||
SecureRandom().nextBytes(nonce)
|
||||
|
||||
// Encrypt using XChaCha20-Poly1305
|
||||
val cipher = XChaCha20Poly1305(key)
|
||||
val plaintext = data.toByteArray(Charsets.UTF_8)
|
||||
val ciphertext = cipher.encrypt(nonce, plaintext)
|
||||
|
||||
return ChaCha20Result(
|
||||
ciphertext = ciphertext.joinToString("") { "%02x".format(it) },
|
||||
nonce = nonce.joinToString("") { "%02x".format(it) },
|
||||
key = key.joinToString("") { "%02x".format(it) }
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt data using XChaCha20-Poly1305
|
||||
*
|
||||
* @param ciphertextHex Hex-encoded ciphertext
|
||||
* @param nonceHex Hex-encoded nonce (24 bytes)
|
||||
* @param keyHex Hex-encoded key (32 bytes)
|
||||
*/
|
||||
fun chacha20Decrypt(ciphertextHex: String, nonceHex: String, keyHex: String): String? {
|
||||
return try {
|
||||
val ciphertext = ciphertextHex.chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val nonce = nonceHex.chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
val key = keyHex.chunked(2).map { it.toInt(16).toByte() }.toByteArray()
|
||||
|
||||
val cipher = XChaCha20Poly1305(key)
|
||||
val decrypted = cipher.decrypt(nonce, ciphertext)
|
||||
|
||||
String(decrypted, Charsets.UTF_8)
|
||||
} catch (e: Exception) {
|
||||
null
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
data class KeyPairData(
|
||||
val privateKey: String,
|
||||
val publicKey: String
|
||||
)
|
||||
|
||||
data class ChaCha20Result(
|
||||
val ciphertext: String,
|
||||
val nonce: String,
|
||||
val key: String
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user